skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Datta, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 10, 2025
  2. Quaternary ammonium compounds (QACs), a large class of chemicals that includes high production volume substances, have been used for decades as antimicrobials, preservatives, and antistatic agents, and for other functions in cleaning, disinfecting, personal care products, and durable consumer goods. QAC use has accelerated in response to the COVID-19 pandemic and the banning of 19 antimicrobials from several personal care products by the US Food and Drug Administration in 2016. Studies conducted before and after the onset of the pandemic indicate increased human exposure to QACs. Environmental releases of these chemicals have also increased. Emerging information on adverse environmental and human health impacts of QACs is motivating a reconsideration of the risks and benefits across the life cycle of their production, use, and disposal. This paper presents a critical review of the literature and scientific perspective developed by a multidisciplinary, multi-institutional team of authors from academia, governmental, and nonprofit organizations. The review evaluates currently available information on the ecological and human health profile of QACs and identifies multiple areas of potential concern. Adverse ecological effects include acute and chronic toxicity to susceptible aquatic organisms, with concentrations of some QACs approaching levels of concern. Suspected or known adverse health outcomes include dermal and respiratory effects, developmental and reproductive toxicity, disruption of metabolic function such as lipid homeostasis, and impairment of mitochondrial function. QACs’ role in antimicrobial resistance has also been demonstrated. In the US regulatory system, how a QAC is managed depends on how it is used, for example, in pesticides or personal care products. This can result in the same QACs receiving different degrees of scrutiny depending on the use and the agency regulating it. Further, the EPA’s current method of grouping QACs based on structure, first proposed in 1988, is insufficient to address the wide range of QAC chemistries, potential toxicities, and exposure scenarios. Consequently, exposures to common mixtures of QACs and from multiple sources remain largely unassessed. Some restrictions on the use of QACs have been implemented in the US and elsewhere, primarily focused on personal care products. Assessing the risks posed by QACs is hampered by their vast structural diversity and a lack of quantitative data on exposure and toxicity for the majority of these compounds. This review identifies important data gaps and provides research and policy recommendations for preserving the utility of QAC chemistries while also seeking to limit adverse environmental and human health effects. 
    more » « less
  3. null (Ed.)
  4. Brain-inspired Hyperdimensional (HD) computing models cognition by exploiting properties of high dimensional statistics– high-dimensional vectors, instead of working with numeric values used in contemporary processors. A fundamental weakness of existing HD computing algorithms is that they require to use floating point models in order to provide acceptable accuracy on realistic classification problems. However, working with floating point values significantly increases the HD computation cost. To address this issue, we proposed QuantHD, a novel framework for quantization of HD computing model during training. QuantHD enables HD computing to work with a low-cost quantized model (binary or ternary model) while providing a similar accuracy as the floating point model. We accordingly propose an FPGA implementation which accelerates HD computing in both training and inference phases. We evaluate QuantHD accuracy and efficiency on various real-world applications, and observe that QuantHD can achieve on average 17.2% accuracy improvement as compared to the existing binarized HD computing algorithms which provide a similar computation cost. In terms of efficiency, QuantHD FPGA implementation can achieve on average 42.3× and 4.7× (34.1× and 4.1×) energy efficiency improvement and speedup during inference (training) as compared to the state-of-the-art HD computing algorithms. 
    more » « less
  5. We present a physics-based model for ferroelectric/negative capacitance transistors (FEFETs/ NCFETs) without an inter-layer metal between ferroelectric and dielectric in the gate stack. The model self-consistently solves 2D Poisson's equation, non-equilibrium Green's function (NEGF) based charge and transport equations, and multi-domain Landau Khalatnikov (LK) equations with the domain interaction term. The proposed simulation framework captures the variation of ferroelectric (FE) polarization (P) along the gate length due to non-uniform electric field (E) along the channel. To calibrate the LK equations, we fabricate and characterize 10nm HZO films. Based on the calibrated model, we analyze the gate/drain voltage dependence of P distribution in the FE and its effect on the channel potential and current-voltage characteristics. Our results highlight the importance of larger domain interaction to boost the benefits of FEFETs with subthreshold swing (SS) as small as ~50mV/decade achieved at room temperature. As domain interaction increases, the characteristics of FEFETs without inter-layer metal (SS, negative drain induced barrier lowering (DIBL), negative output conductance) approach those of FEFETs with inter-layer metal. 
    more » « less
  6. Abstract We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19, during the LIGO–Virgo–KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered ∼14% of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz, where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy 1 × 10−4Mc2and luminosity 2.6 × 10−4Mc2s−1for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  7. Abstract Continuous gravitational waves (CWs) emission from neutron stars carries information about their internal structure and equation of state, and it can provide tests of general relativity. We present a search for CWs from a set of 45 known pulsars in the first part of the fourth LIGO–Virgo–KAGRA observing run, known as O4a. We conducted a targeted search for each pulsar using three independent analysis methods considering single-harmonic and dual-harmonic emission models. We find no evidence of a CW signal in O4a data for both models and set upper limits on the signal amplitude and on the ellipticity, which quantifies the asymmetry in the neutron star mass distribution. For the single-harmonic emission model, 29 targets have the upper limit on the amplitude below the theoretical spin-down limit. The lowest upper limit on the amplitude is 6.4 × 10−27for the young energetic pulsar J0537−6910, while the lowest constraint on the ellipticity is 8.8 × 10−9for the bright nearby millisecond pulsar J0437−4715. Additionally, for a subset of 16 targets, we performed a narrowband search that is more robust regarding the emission model, with no evidence of a signal. We also found no evidence of nonstandard polarizations as predicted by the Brans–Dicke theory. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  8. Abstract We present results from a search for X-ray/gamma-ray counterparts of gravitational-wave (GW) candidates from the third observing run (O3) of the LIGO–Virgo–KAGRA network using the Swift Burst Alert Telescope (Swift-BAT). The search includes 636 GW candidates received with low latency, 86 of which have been confirmed by the offline analysis and included in the third cumulative Gravitational-Wave Transient Catalogs (GWTC-3). Targeted searches were carried out on the entire GW sample using the maximum-likelihood Non-imaging Transient Reconstruction and Temporal Search pipeline on the BAT data made available via the GUANO infrastructure. We do not detect any significant electromagnetic emission that is temporally and spatially coincident with any of the GW candidates. We report flux upper limits in the 15–350 keV band as a function of sky position for all the catalog candidates. For GW candidates where the Swift-BAT false alarm rate is less than 10−3Hz, we compute the GW–BAT joint false alarm rate. Finally, the derived Swift-BAT upper limits are used to infer constraints on the putative electromagnetic emission associated with binary black hole mergers. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026